73 research outputs found

    The effect of NOTCH3 pathogenic variant position on CADASIL disease severity: NOTCH3 EGFr 1–6 pathogenic variant are associated with a more severe phenotype and lower survival compared with EGFr 7–34 pathogenic variant

    Get PDF
    Purpose: CADASIL is a small-vessel disease caused by a cysteine-altering pathogenic variant in one of the 34 epidermal growth factor-like repeat (EGFr) domains of the NOTCH3 protein. We recently found that pathogenic variant in EGFr domains 7\u201334 have an unexpectedly high frequency in the general population (1:300). We hypothesized that EGFr 7\u201334 pathogenic variant more frequently cause a much milder phenotype, thereby explaining an important part of CADASIL disease variability. Methods: Age at first stroke, survival and white matter hyperintensity volume were compared between 664 CADASIL patients with either a NOTCH3 EGFr 1\u20136 pathogenic variant or an EGFr 7\u201334 pathogenic variant. The frequencies of NOTCH3 EGFr 1\u20136 and EGFr 7\u201334 pathogenic variant were compared between individuals in the genome Aggregation Database and CADASIL patients. Results: CADASIL patients with an EGFr 1\u20136 pathogenic variant have a 12-year earlier onset of stroke than those with an EGFr 7\u201334 pathogenic variant, lower survival, and higher white matter hyperintensity volumes. Among diagnosed CADASIL patients, 70% have an EGFr 1\u20136 pathogenic variant, whereas EGFr 7\u201334 pathogenic variant strongly predominate in the population. Conclusion: NOTCH3 pathogenic variant position is the most important determinant of CADASIL disease severity, with EGFr 7\u201334 pathogenic variant predisposing to a later onset of stroke and longer survival

    Grey matter volume alterations in CADASIL: a voxel-based morphometry study

    Get PDF
    CADASIL is a hereditary disease characterized by cerebral subcortical microangiopathy leading to early onset cerebral strokes and progressive severe cognitive impairment. Until now, only few studies have investigated the extent and localization of grey matter (GM) involvement. The purpose of our study was to evaluate GM volume alterations in CADASIL patients compared to healthy subjects. We also looked for correlations between global and regional white matter (WM) lesion load and GM volume alterations. 14 genetically proved CADASIL patients and 12 healthy subjects were enrolled in our study. Brain MRI (1.5 T) was acquired in all subjects. Optimized-voxel based morphometry method was applied for the comparison of brain volumes between CADASIL patients and controls. Global and lobar WM lesion loads were calculated for each patient and used as covariate-of-interest for regression analyses with SPM-8. Compared to controls, patients showed GM volume reductions in bilateral temporal lobes (p < 0.05; FDR-corrected). Regression analysis in the patient group revealed a correlation between total WM lesion load and temporal GM atrophy (p < 0.05; uncorrected), not between temporal lesion load and GM atrophy. Temporal GM volume reduction was demonstrated in CADASIL patients compared to controls; it was related to WM lesion load involving the whole brain but not to lobar and, specifically, temporal WM lesion load. Complex interactions between sub-cortical and cortical damage should be hypothesized

    ADC Histograms from Routine DWI for Longitudinal Studies in Cerebral Small Vessel Disease: A Field Study in CADASIL.

    Get PDF
    Diffusion tensor imaging (DTI) histogram metrics are correlated with clinical parameters in cerebral small vessel diseases (cSVD). Whether ADC histogram parameters derived from simple diffusion weighted imaging (DWI) can provide relevant markers for long term studies of cSVD remains unknown. CADASIL patients were evaluated by DWI and DTI in a large cohort study overa6-year period. ADC histogram parameters were compared to those derived from mean diffusivity (MD) histograms in 280 patients using intra-class correlation and Bland-Altman plots. Impact of image corrections applied to ADC maps was assessed and a mixed effect model was used for analyzing the effects of scanner upgrades. The results showed that ADC histogram parameters are strongly correlated to MD histogram parameters and that image corrections have only limited influence on these results. Unexpectedly, scanner upgrades were found to have major effects on diffusion measures with DWI or DTI that can be even larger than those related to patients' characteristics. These data support that ADC histograms from daily used DWI can provide relevant parameters for assessing cSVD, but the variability related to scanner upgrades as regularly performed in clinical centers should be determined precisely for longitudinal and multicentric studies using diffusion MRI in cSVD

    Correction to: The effect of NOTCH3 pathogenic variant position on CADASIL disease severity: NOTCH3 EGFr 1&#8211;6 pathogenic variant are associated with a more severe phenotype and lower survival compared with EGFr 7&#8211;34 pathogenic variant

    Get PDF
    This Article was originally published under Nature Research\u2019s License to Publish, but has now been made available under a [CC BY 4.0] license. The PDF and HTML versions of the Article have been modified accordingly

    Genome-wide genotyping demonstrates a polygenic risk score associated with white matter hyperintensity volume in CADASIL

    Get PDF
    Background and Purpose—White matter hyperintensities (WMH) on MRI are a quantitative marker for sporadic cerebral small vessel disease and are highly heritable. To date, large-scale genetic studies have identified only a single locus influencing WMH burden. This might in part relate to biological heterogeneity of sporadic WMH. The current study searched for genetic modifiers of WMH volume in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a monogenic small vessel disease. Methods—We performed a genome-wide association study to identify quantitative trait loci for WMH volume by combining data from 517 CADASIL patients collected through 7 centers across Europe. WMH volumes were centrally analyzed and quantified on fluid attenuated inversion recovery images. Genotyping was performed using the Affymetrix 6.0 platform. Individuals were assigned to 2 distinct genetic clusters (cluster 1 and cluster 2) based on their genetic background. Results—Four hundred sixty-six patients entered the final genome-wide association study analysis. The phenotypic variance of WMH burden in CADASIL explained by all single nucleotide polymorphisms in cluster 1 was 0.85 (SE=0.21), suggesting a substantial genetic contribution. Using cluster 1 as derivation and cluster 2 as a validation sample, a polygenic score was significantly associated with WMH burden (P=0.001) after correction for age, sex, and vascular risk factors. No single nucleotide polymorphism reached genome-wide significance. Conclusions—We found a polygenic score to be associated with WMH volume in CADASIL subjects. Our findings suggest that multiple variants with small effects influence WMH burden in CADASIL. The identification of these variants and the biological pathways involved will provide insights into the pathophysiology of white matter disease in CADASIL and possibly small vessel disease in general

    Cortical Gyrification and Sulcal Spans in Early Stage Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is characterized by an insidious onset of progressive cerebral atrophy and cognitive decline. Previous research suggests that cortical folding and sulcal width are associated with cognitive function in elderly individuals, and the aim of the present study was to investigate these morphological measures in patients with AD. The sample contained 161 participants, comprising 80 normal controls, 57 patients with very mild AD, and 24 patients with mild AD. From 3D T1-weighted brain scans, automated methods were used to calculate an index of global cortex gyrification and the width of five individual sulci: superior frontal, intra-parietal, superior temporal, central, and Sylvian fissure. We found that global cortex gyrification decreased with increasing severity of AD, and that the width of all individual sulci investigated other than the intra-parietal sulcus was greater in patients with mild AD than in controls. We also found that cognitive functioning, as assessed by Mini-Mental State Examination (MMSE) scores, decreased as global cortex gyrification decreased. MMSE scores also decreased in association with a widening of all individual sulci investigated other than the intra-parietal sulcus. The results suggest that abnormalities of global cortex gyrification and regional sulcal span are characteristic of patients with even very mild AD, and could thus facilitate the early diagnosis of this condition

    Cerebral microinfarcts: the invisible lesions

    Get PDF
    The association between small but still visible lacunar infarcts and cognitive decline has been established by multiple population-based radiological and pathological studies. Microscopic examination of brain sections reveals even smaller but substantially more numerous microinfarcts, the focus of the current review. These lesions often result from small vessel pathologies such as arteriolosclerosis or cerebral amyloid angiopathy. They typically go undetected in clinical-radiological correlation studies that rely on conventional structural MRI, though the largest acute microinfarcts may be detectable by diffusion-weighted imaging. Given their high numbers and widespread distribution, microinfarcts may directly disrupt important cognitive networks and thus account for some of the neurologic dysfunction seen in association with lesions visible on conventional MRI such as lacunar infarcts and white matter hyperintensities. Standardized neuropathological assessment criteria and development of non-invasive means of detection during life would be major steps towards understanding the causes and consequences of the otherwise macroscopically invisible microinfarct

    METACOHORTS for the study of vascular disease and its contribution to cognitive decline and neurodegeneration: an initiative of the Joint Programme for Neurodegenerative Disease Research

    Get PDF
    Dementia is a global problem and major target for health care providers. Although up to 45% of cases are primarily or partly due to cerebrovascular disease, little is known of these mechanisms or treatments because most dementia research still focuses on pure Alzheimer's disease. An improved understanding of the vascular contributions to neurodegeneration and dementia, particularly by small vessel disease, is hampered by imprecise data, including the incidence and prevalence of symptomatic and clinically “silent” cerebrovascular disease, long-term outcomes (cognitive, stroke, or functional), and risk factors. New large collaborative studies with long follow-up are expensive and time consuming, yet substantial data to advance the field are available. In an initiative funded by the Joint Programme for Neurodegenerative Disease Research, 55 international experts surveyed and assessed available data, starting with European cohorts, to promote data sharing to advance understanding of how vascular disease affects brain structure and function, optimize methods for cerebrovascular disease in neurodegeneration research, and focus future research on gaps in knowledge. Here, we summarize the results and recommendations from this initiative. We identified data from over 90 studies, including over 660,000 participants, many being additional to neurodegeneration data initiatives. The enthusiastic response means that cohorts from North America, Australasia, and the Asia Pacific Region are included, creating a truly global, collaborative, data sharing platform, linked to major national dementia initiatives. Furthermore, the revised World Health Organization International Classification of Diseases version 11 should facilitate recognition of vascular-related brain damage by creating one category for all cerebrovascular disease presentations and thus accelerate identification of targets for dementia prevention
    • 

    corecore